
Episode 2 exercise: Linear data structures for storing sets

Rasmus Pagh

August 21, 2013

Background. In some applications it is desirable to have linear data structures for storing sets, such that
adding and subtracting data structures correspond to set operations. For example, suppose that S1 ⊆ S2 and
these sets are represented by linear data structures D(S1) and D(S2). Then the difference D(S2)−D(S1) will
be a data structure for S2\S1. Computing S2\S1 could for example be important in a distributed setting,
where data sets periodically need to be kept in sync. The surprise is that the capacity of D(S1) and D(S2)
can possibly be much smaller than the sets S1 and S2, as long as it is big enough for S2\S1. That is, each
of D(S1) and D(S2) individually may not tell us anything about S1 and S2, while their difference can!

Simple linear dictionaries based on peeling. Following Goodrich and Mitzenmacher (Allerton
2011), we will derive a simple linear dictionary based on the idea of multiple-choice hashing and peeling. We
will consider keys to be positive integers, such that it makes sense to do arithmetic using them. The first
idea is to use the same setup as in cuckoo hashing, but rather than placing a key x in either A[h1(x)] or
A[h2(x)], we add x in both places. If we let Si = {x ∈ S | h1(x) = i ∨ h2(x) = i} be the set of keys in S
having i as a hash value, then A[i] =

∑
x∈Si

x.

a) Argue that this yields a linear data structure, but will generally not allow us to compute the keys in S,
even if the corresponding choice graph is acyclic.

b) Argue that if we extend the data structure with a table of counts, where C[i] = |Si|, and the choice graph
{{h1(x), h2(x)} | x ∈ S} is acyclic, we can determine all keys in S. Hint: Once a key is determined,
“peel” it from the data structure.

The solution of storing counts is not entirely satisfying because it may silently fail if we do not have
S1 ⊆ S2, more precisely when a key in S1\S2 collides with a key in S2\S1. To get a more robust solution
we want to be able to decide whether Si = {|A[i]|}. As we will see, this can be achieved, with a small error
probability, by replacing C by a table A′ with sums of hash values of the sets Si. That is, for some hash
function H : U → {0, . . . , p− 1} we let A′[i] =

∑
x∈Si

H(x), which is again linear.

c) Show that if values of H are random and independent, the probability that
∑

x∈A H(x) =
∑

x∈B H(x)
where A 6= B is 1/p.

d) Oyster question (hard). Find an explicit function H with a description size of O(log p) bits such that
the property of question c) holds.

1

